1		mark	notes
(i)	$\mathbf{F} = (10 - 8\cos 50)\mathbf{i} + 8\sin 50\mathbf{j}$	M1 A1	Resolution. Accept $s \leftrightarrow c$. Condone resolution in only one direction. Award for a vector with either component correct or consistent $s \leftrightarrow c$ error is only mistake in the vector. Need not be evaluated.
	= 4.85769 i + 6.128355 j so 4.86 i + 6.13 j (3 s. f.)	A1 3	cao. Must be in $a\mathbf{i} + b\mathbf{j}$ or column format. Must be correct to 3 s. f.
(ii)	$ \mathbf{F} = \sqrt{4.85769^2 + 6.12835^2} = 7.820101$		
	so 7.82 (3 s. f.)	B1	FT their F
	angle is $\arctan \frac{4.857}{6.128}$	M1	Or equivalent. FT their F. Accept $\arctan \frac{6.128}{4.857}$. Accept complementary angle and \pm signs
	= 38.40243 so 38.4° (3 s. f.)	F1 3	FT only their F .
		6	

2		Mark	Comment	
(i)	Resultant is $\begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -6 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix}$	M1	Adding the vectors. Condone spurious notation.	
	Magnitude is $\sqrt{(-2)^2 + 3^2 + 6^2} = \sqrt{49} = 7 \text{ N}$	A1 M1 F1	Vector must be in proper form (penalise only once in the paper). Accept clear components. Pythagoras on their 3 component vector. Allow e.g. – 2² for (– 2)² even if evaluated as – 4. FT their resultant.	4
(ii)	F + 2G + H = 0	M1	Either $F + 2G + H = 0$ or $F + 2G = H$	
	So $\mathbf{H} = -2\mathbf{G} - \mathbf{F} = -\begin{pmatrix} -12\\4\\8 \end{pmatrix} - \begin{pmatrix} 4\\1\\2 \end{pmatrix}$	A1	Must see attempt at H = -2 G - F	
	$= \begin{pmatrix} 8 \\ -5 \\ -10 \end{pmatrix}$	A1	cao. Vector must be in proper form (penalise only once in the paper).	3
		7		5

3		mark		sub
(i)	R = mg so 49 N	B1	Equating to weight. Accept 5g (but not mg)	1
(ii)	R 40° 7 10 N F 49 N	B1	All except F correct (arrows and labels) (Accept mg, W etc and no angle). Accept cpts instead of 10N. No extra forces. F clearly marked and labelled	2
(iii)	$\uparrow R + 10\cos 40 - 49 = 0$ $R = 41.339 \text{ so } 41.3 \text{ N } (3 \text{ s. f.})$ $F = 10\sin 40 = 6.4278 \text{ so } 6.43 \text{ N } (3 \text{ s. f.})$	M1 B1 A1 B1	Resolve vertically. All forces present and 10N resolved Resolution correct and seen in an equation. (Accept $R = \pm 10\cos 40$ as an equation) Allow –ve if consistent with the diagram.	4
				7

4		mark		sub
(i)	$\downarrow 20 + 16\cos 60 = 28$	B1		1
(ii)	either → 16 sin 60	B1 M1	Any form. May be seen in (i). Accept any appropriate equivalent resolution. Use of Pythag with 2 distinct cpts (but not 16 and \pm 20)	
	Mag $\sqrt{28^2 + 192} = 31.2409$ so 31.2 N (3 s.f.) or Cos rule $mag^2 = 16^2 + 20^2 - 2 \times 16 \times 20 \times \cos 120$ 31.2 N (3 s. f.)	F1 M1 A1 A1	Allow 34.788 only as FT Must be used with 20 N, 16 N and 60° or 120° Correct substitution	3
(iii)	Magnitude of accn is 15.620 m s ⁻² so 15.6 m s ⁻² (3 s. f.) angle with 20 N force is $\arctan\left(\frac{16\sin 60}{28}\right)$	B1 M1	Award only for their $F \div 2$ Or equiv. May use force or acceleration. Allow use	
	so 26.3295 so 26.3° (3 s. f.)	A1	of sine or cosine rules. FT only $s \leftrightarrow c$ and sign errors. Accept reciprocal of the fraction. cao	3

5		mark		
(i)	$\begin{pmatrix} x \\ -7 \\ z \end{pmatrix} + \begin{pmatrix} 4 \\ y \\ -5 \end{pmatrix} + \begin{pmatrix} 5 \\ 4 \\ -7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Equating components gives $x = -9, y = 3, z = 12$	M1 A1 A1 A1	[Allow SC 2/4 if 9, -3, -12 obtained]	4
(ii)			[internal and internal and inte	Ť
	We need $\sqrt{5^2 + 4^2 + (-7)^2}$ = $\sqrt{90}$ or 9.48683 so 9.49 (3 s. f.)	M1		
	$= \sqrt{90}$ or 9.48683 so 9.49 (3 s. f.)	A1	Any reasonable accuracy	2
	total	6		

6		mark		
(i)	$T_{\rm BA}$ $400 {\rm N}$ $T_{\rm BC}$	B1	Different labels. All forces present with arrows in correct directions. Condone no angles.	1
(ii)	Using triangle of forces $T_{\rm BC}$	M1	Attempt at triangle of forces. Ignore angles and arrows. Accept 90, 60, 30 triangle.	
	$T_{\rm BA}$ $\begin{pmatrix} 30 \\ 120 \\ 30 \end{pmatrix}$ 400 N	B1	Triangle, arrows, labels and angles correct	
	Triangle isosceles so tension in BC is 400 N	A1	cao	
	Tension in BA is $2\times400\times\cos 30 = 400\sqrt{3}$ N	F1	FT BC only	
	(693 N, (3 s. f.))		[If resolution used, M1 for 1 equn; M1 for 2^{nd} equn + attempt to elim; A1; F1. For M marks all forces present but allow $s \leftrightarrow c$ and sign errors. No extra forces. If Lami used: M1 first pair of equations in correct format, condone wrong angles. A1. M1 second pair in correct format, with correct angles.F1 FT their first answer if necessary.]	4
(iii)	Resolve at B perpendicular to the line ABC	E1	Attempt to argue unbalanced force	
	Weight has unbalanced component in this direction	E1	Complete, convincing argument. [or Resolve horiz and establish tensions equal E1	
			Resolve vert to show inconsistency. E1]	2
	total	7		